See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/230783037

Papers: A novel gold nanoparticles-based assay for rapid detection of Melissococcus plutonius, the causative agent of European foulbrood

ARTICLE · SEPTEMBER 2012

DOI: 10.1136/vr.101040 · Source: PubMed

CITATIONS

6

READS

93

5 AUTHORS, INCLUDING:

Hatem Soliman

Assiut University

53 PUBLICATIONS 472 CITATIONS

SEE PROFILE

Henning Sørum

Norwegian University of Life Sciences (NMBU)

110 PUBLICATIONS 2,190 CITATIONS

SEE PROFILE

Mansour El-Matbouli

University of Veterinary Medicine, Vienna

169 PUBLICATIONS 2,818 CITATIONS

SEE PROFILE

Papers

A novel gold nanoparticles-based assay for rapid detection of *Melissococcus plutonius,* the causative agent of European foulbrood

M. Saleh, H. Soliman, H. Sørum, A. K. Fauske, M. El-Matbouli

European foulbrood (EFB) is a severe bacterial brood disease of honey bees (Apis mellifera) caused by Melissococcus plutonius. Diagnosis of EFB in the field is based on visual inspection of brood-combs and detection of diseased larvae. However, symptoms of EFB may be easily obscured by other diseases or abnormalities in the brood, making definitive diagnosis difficult. Hence, confirmatory laboratory assays, such as PCR and real-time PCR, are used to verify the presence of *M plutonius* in suspected colonies. While these methods are accurate and specific, they are time consuming and labour intensive. Herein, we report development of a label-free colorimetric nanodiagnostic method for direct detection of unamplified M plutonius DNA using unmodified gold nanoparticles. Under appropriate conditions, the DNA probes hybridised with their complementary target sequences in the sample DNA, which resulted in aggregation of the gold nanoparticles and a concomitant red to blue colour change, which was observed visually. The assay could detect as few as 25 copies of the M plutonius cell wall-associated protease gene within 20 minutes. The assay results were in 100 per cent concordance with real-time PCR-positive and PCR-negative samples. Our study demonstrated that the gold nanoparticles-based assay is a specific and sensitive tool for rapid detection of M plutonius.

Introduction

Honey bees (*Apis mellifera*) are not only important for the honey they produce, but also as vital pollinators of agricultural and horticultural crops (Forsgren 2010, Genersch 2010). Colony numbers in Europe decreased from over 21 million in 1970 to about 15.5 million in 2007 (FAO 2009). While this decrease was gradual before 1990, a higher rate of decline was observed thereafter (vanEngelsdorp and Meixner 2009). Reasons for declining honey bee colony numbers include direct affects on broods and adults from a range of pathogens, which include bacteria, viruses, protozoa, fungi and parasitic mites. European foulbrood (EFB) caused by the Gram-positive bacterium *Melissococcus plutonius*, is one of the most economically significant diseases of honey bees (Forsgren 2010). The bacterium is a non-spore-forming, lanceolate coccus, occurring singly, in pairs and in chains, and measuring 0.5–0.7 × 1.0 mm (Alippi 1991, Shimanuki and others 1992). The disease is endemic in North and South America, Europe, Japan,

Veterinary Record (2012)

M. Saleh, PhD,
H. Soliman, PhD,
M. El-Matbouli, PhD,
Clinical Division of Fish Medicine,
Department for Farm Animal &
Veterinary Public Health,
University of Veterinary Medicine,
Veterinaerplatz 1,
Vienna A-1210,
Austria
H. Sørum, PhD,
A. K. Fauske, PhD.

doi: 10.1136/vr.101040

Immunology and Parasitology, Institute of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O. Box 8146 Dep, Oslo N-0033, Norway E-mail for correspondence: Mansour.El-Matbouli@vetmeduni.ac.at Provenance: not commissioned; externally peer reviewed Accepted July 27, 2012

Department of Microbiology,

Australia, India and southern Africa (Matheson 1993). EFB is a notifiable disease in several countries (Bailey and Collins 1982, Bailey 1983). In Australia, it has been considered as a serious disease that usually occurs in spring when the brood expands (Graham 1992, Mckee and others 2003). In the UK, the disease is particularly prevalent and increasing dramatically (Wilkins and others 2007, Tomkies and others 2009). In Switzerland, even though clinically diseased colonies are destroyed, the incidence of EFB has constantly risen each year since the late 1990s (Forsgren and others 2005, Belloy and others 2007, Roetschi and others 2008). After a 30-year period without any reported cases, Norway battled a regional outbreak of EFB during 2010, and The Netherlands has also reported an increase over the last 10 years (Forsgren and Genersch 2011).

The clinical symptoms of EFB in honeybee colonies were first described in 1885 by Cheshire and Cheyne (1885). Bee larvae are extremely susceptible to *M plutonius* which kills them at the age of four to five days. When the larvae die, they often turn brown, decompose and give off a foul odour. Usually, a secondary infection with bacteria accelerates death. There is often a well-defined pattern of seasonal outbreaks, mostly in the spring and early summer (Bailey 1961, Graham 1992). Signs of disease usually disappear spontaneously from infected colonies before the end of the active season, but are likely to return in subsequent years (Bailey 1956, 1983, Bailey and Ball 1991).

Diagnosis of EFB in the field is based on visual inspection of brood-combs and detection of diseased larvae. However, confirmatory laboratory methods, such as isolation of bacteria from infected larvae or honey (Hornitzky and Smith 1998), and microscopic examination of carbol fuchsin-stained smears of diseased larvae (Hornitzky and Wilson 1989) are recommended to verify the presence of *M plutonius*. The bacterium may also be identified by scanning electron microscopy, ELISA or by the recently presented Lateral Flow Device for detection in extracts of infected tissue (Pinnock and

Papers

Featherstone 1984, Alippi 1991, Tomkies and others 2009). PCR assays, both semi-nested and real-time, have been developed for detection of *M plutonius* (Djordjevic and others 1998, Govan and others 1998, McKee and others 2003, Roetschi and others 2008). All these confirmatory methods require a laboratory setting, and have high associated costs that prevent their wide-scale use at points-of-care and in developing nations (Kaittanis and others 2010).

A powerful emerging technology based on the unique properties of nanoscale materials presents a great opportunity to develop fast, accurate and cost-effective diagnostics for the detection of pathogenic infectious agents (Jain 2005, Rosi and Mirkin 2005, Kaittanis and others 2010). The optical transduction by noble metal nanoparticles is based upon the phenomenon of nanoparticle surface plasmon resonance (Kreibig and Genzel 1985, Quinten and Kreibig 1986, Link and El-Sayed 2000). Surface plasmon resonance is the collective oscillations of surface electrons induced by visible light, and is responsible for the intense colours exhibited by colloidal solutions of noble metals, such as gold and silver (Nath and Chilkoti 2004, Jain and others 2006). The colours obtained by nanoparticles of these metals come about through interaction of incident light with the free electrons that promote resonant excitation of an oscillating dipole (Yguerabide and Yguerabide 1998a, b, Nath and Chilkoti 2004). Because of the unique size, shape and composition-dependent optical, physical and chemical properties that gold nanoparticles display, they are suitable for a wide range of biological applications (Pissuwan and others 2010). Gold nanoparticles (AuNPs) in solution are particularly stable due to adsorbed negatively charged citrate ions on their surfaces, whose repulsion prevents the strong van der Waals attraction between gold particles from causing them to aggregate (Shaw 1991, Hunter 2001). An aqueous solution of gold particles modified with synthetic surface oligonucleotides appears initially brilliant red, but changes to blue after aggregation of the particles upon hybridisation with the target sequence, after salt addition (Mirkin and others 1996, Elghanian and others 1997, Li and Rothberg 2004, Storhoff and others 2004).

Li and Rothberg (2004) used the different electrostatic properties of single- and double-stranded oligonucleotides (ssDNA and dsDNA) to signal oligonucleotide hybridisation. They document that the adsorption of ssDNA on gold nanoparticles is selective, and show that this process stabilises the gold nanoparticles against aggregation at concentrations of salt that would ordinarily screen the repulsive interactions of the citrate ions in the absence of a complementary target sequence. Consequently, this phenomenon has been used to design various colorimetric hybridisation assays (Li and Rothberg 2004, Li and Rothberg 2005, Shawky and others 2010).

In this study, we present a label-free gold nanoparticle-based assay for direct detection of unamplified *M plutonius* DNA. The colorimetric assay is specific, sensitive, rapid and cost-effective.

Materials and methods Bacteria

M plutonius-type strain ATCC 35311 was grown anaerobically at 35°C on EFB-agar/broth media (Bailey 1957). Prior to use, the media were supplemented with 3 µg/ml of nalidixic acid (Hornitzky and Smith 1998). Enterococcus faecalis, Actinobacillus pleuropneumoniae, Enterococcus faecium, Erysipelothrix rhusiopathiae and Paenibacillus larvae strains were grown on their specific media (Alippi 1991).

DNA extraction from bacterial cultures

Bacterial colonies were harvested from cultures of *M plutonius, E faecalis, A pleuropneumoniae, E faecium, E rhusiopathiae* and *P larvae*, and pelleted by centrifugation. Bacterial genomic DNA was extracted from each pellet with a GeneMole DNA extraction machine (Mole Genetics, Norway) as per the manufacturer's instructions.

DNA extraction from samples of infected and healthy bee colonies

M plutonius-infected and uninfected larvae were mixed in lysis buffer (20 mM Tris-HCl, pH 8.0, 2 mM EDTA, 1.2 per cent Triton X-100), supplemented with 20 mg/ml lysozyme and incubated at 37°C for 30 minutes. Subsequently, 15 μl Proteinase K (Qiagen, Germany)

was added to each sample, and incubated at $56^{\circ}C$ for 30 minutes. DNA was then extracted from the homogenate (200 μ l) using the GeneMole DNA extraction machine (Mole Genetics, Norway) as per the manufacturer's instructions.

Real-time PCR of Mplutonius

The primers, Melisso-F, Melisso-R and the minor groove binding TaqMan probe (Table 1), were used to amplify a 79-bp fragment of the M plutonius sodA gene according to Roetschi and others 2008. The real-time PCR was carried out in a final reaction volume of 12 μ l containing 0.3 μ M of each primer, 0.1 μ M probe, 2 × reaction buffer and 2 μ l of DNA. The qPCR MasterMix No Rox (Eurogentec, Belgium) was used for all measurements. The cycling profile was: 50°C for two minutes, 95°C for 10 minutes, and 40 cycles of 95°C for 15 seconds and 60°C for one minute. Fluorescent data were collected during the 60°C step.

Preparation of gold nanoparticles

Gold nanoparticles (13 nm diameter) were synthesised by reduction of HAuCl $_4$ by sodium citrate, following the protocol of Storhoff and others (1998). Briefly, an aqueous solution of HAuCl $_4$ ·3H $_2$ O was brought to boil under reflux while being stirred, then 10 ml of 1 per cent trisodium citrate was added quickly. The colour of the solution changed from yellow to deep red. The solution was refluxed for an additional 15 minutes and then allowed to cool to room temperature. The solution was then filtered through a 0.45 μm acetate filter and stored at $4^{\circ}C$.

Probe design for the *M plutonius* gold nanoparticles-based assay

Two specific probes, EFB- AuNPs- P1 & EFB- AuNPs -P2 (Table 1), were designed to target the *M plutonius* cell wall-associated protease gene (GeneBank accession number NC_015516, Okumura and others 2011). The specificity of the probes against DNA sequences of related bacteria available in GenBank was assessed by BLAST search.

Colorimetric detection of *M plutonius*-DNA from bacterial isolates and infected samples

To determine the optimum concentrations sufficient for visual detection of the colour change, and at the same time, appropriate for proper annealing of the probe to its target, different concentrations of NaCl (0.01M–1.0M) and probe (0.1 μ M–3 μ M) were tested.

Extracted DNA (5 $\mu l)$ was mixed well in a sterile PCR tube with 3 μl hybridisation buffer (10 mM phosphate buffer saline, pH 7.0, containing 0.5M NaCl), 2 μM probe, with sterile distilled water to a total volume of 10 μl . The assay was conducted at different annealing temperatures and incubation times to determine optimal conditions (annealing temperature and time). The mixture was denatured at 95°C for five minutes, annealed at 50°C for further five minutes, and then cooled to room temperature for 10 minutes. The change in the solution colour was observed visually within one minute after addition of 10 μl of colloidal AuNPs to the reaction mixture.

Specificity and sensitivity of the *M plutonius* gold nanoparticles-based assay

After optimisation of the reaction, the gold nanoparticles-based assay was tested with DNA from a range of bacterial species (Table 2) to test the specificity of the designed probes.

TABLE 1: Melissococcus plutonius primers and probes used in this study (GeneBank accession number NC_015516)

Primers/probes name	Sequences (5'-3')	References
RT-PCR: Melisso-F* RT-PCR: Melisso-R RT-PCR: TaqMan Probe	CAGCTAGTCGGTTTGGTTCC TTGGCTGTAGATAGAATTGACAAT FAM-CTTGGTTGGTCGTTGAC-	Roetschi and others 2008 Roetschi and others 2008 Roetschi and others 2008
EFB-AuNPs-P1† EFB-AuNPs-P2	MGB-NFQ AGGGAACTGTCAATTTAGCAGT CCAGTTCCCTTGGC AGTT	This study This study

*EFB European foulbrood, MGB Minor groove binding, RT-PCR, Real-time PCR † = Probes used for *M plutonius* gold nanoparticles assay

TABLE 2: Bacterial species used to verify the specificity of the	
Melissococcus plutonius gold nanoparticles-based assav	

Bacterial species	Strain	Results of the specificity assay
Actinobacillus pleuropneumoniae	NVH164a	Negative
Enterococcus faecalis	DSM20478	Negative
E faecalis	NVH 1103/98	Negative
Enterococcus faecium	CCUG36804	Negative
Erysipelothrix rhusiopathiae	NVH93	Negative
M plutonius	NVH524	Positive
M plutonius	NVH526	Positive
Paenibacillus larvae	CCUG28515	Negative

A 10-fold serial dilution of 100 ng purified *M plutonius* DNA was used to determine the lower detection limit of the gold nanoparticles assay, and was tested also by real-time PCR assay.

Applicability of the *M plutonius* gold nanoparticlesbased assay

The ability of the assay to detect *M plutonius* DNA in clinical samples was evaluated by testing eight infected and 18 uninfected bee colonies. All samples were tested by both the gold nanoparticles and real-time PCR assays.

Results

A 0.5M NaCl concentration was sufficient for both aggregation of AuNPs and proper annealing of the probe to its target. The optimum concentration of the M plutonius probes was 2 μM . Thus, the hybridisation buffer was prepared using 0.5M NaCl and 2 μ M probes in 10 mM PBS at pH 7.0. Optimal reaction conditions were: denaturation at 95°C for five minutes, annealing at 50°C for five minutes, then hold the reaction mixture at room temperature for 10 minutes before addition of 10 µl AuNPs. The designed probes were highly specific to *M plutonius* sequences in GenBank and strain used in this study. Moreover, they were not complementary to any related bacterial DNA sequences indicated by the BLAST search. After addition of the AuNPs, the colour of the reaction mixture changed to blue in the presence of DNA extracted from *M plutonius*; it remained red with the negative control. Neither aggregation nor colour change were observed when DNA extracted from the other bacteria were used, which confirmed the specificity of the assay.

The *M plutonius*-AuNPs assay could detect as little as 50 fg *M plutonius* DNA (Fig 1) which represents 25 copies of *M plutonius* (Staroscik 2004, Okumura and others 2011). The sensitivity of the real-time PCR assay was 5 fg of *M plutonius* DNA. Both assays detected *M plutonius* DNA in the eight infected clinical samples, with no detections in the 18 uninfected samples. The results obtained using the

FIG 1: Sensitivity of the *Melissococcus plutonius*-AuNPs assay. The lower detection limit of the *M plutonius*-AuNPs assay was estimated using 10-fold serial dilutions from100 ng to 0.1 fg of *M plutonius* DNA. The colour changes from red to blue in positive samples

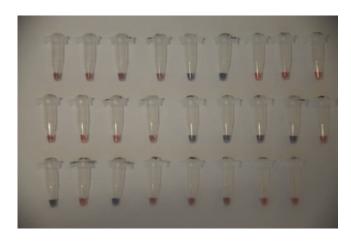


FIG 2: Feasibility of the *Melissococcus plutonius*- AuNPs assay to detect *M plutonius* DNA in clinical samples. The ability of the *M plutonius*-AuNPs assay to detect *M plutonius* DNA in clinical samples was evaluated by testing eight DNA samples extracted from *M plutonius* infected bee-hives, and 18 DNA samples extracted from uninfected samples. The colour changes from red to blue in positive samples.

nanoparticle-based assay (Fig 2) were in concordance with those obtained with the real-time PCR system each of the five times the assays were performed.

Discussion

Although selective media can be used to cultivate *M plutonius*, its detection can prove difficult due to the relative complexity of the culture procedure and its fastidious growth requirements (Pinnock and Featherstone 1984, Alippi 1991, Djordjevic and others 1998, Hornitzky and Smith 1998, Forsgren 2010). We employed an alternate strategy: a novel gold nanoparticle-based assay that is rapid, accurate and specific for the detection of *M plutonius* directly from diseased bee larvae. Several gold nanoparticles-based colorimetric detection assays have been designed, the first of them by Elghanian and others (1997), which could detect down to 10 fmol of target DNA. A recent gold nanoparticle method for direct detection of unamplified hepatitis C virus RNA to a detection limit of 50 copies/reaction (Shawky and others 2010). Herein, we introduce a sensitive colorimetric method that could detect at least 50 fg (25 copies/reaction) of *M plutonius* DNA.

The oligonucleotide probes that we designed did not cross-react with related bacterial species, and successfully detected DNA extracted from M plutonius in a rapid and highly specific manner. It was essential to optimise the concentration of the ssDNA because too low a concentration can lead to particle aggregation in the absence of target DNA, that is, false positives, whereas in the presence of the target, a very high probe concentration would have prevented aggregation, producing false negative results. We optimised pH, temperature, time and salt concentration conditions for hybridisation, before addition of the AuNPs. A fluorescent probe or a DNA-binding dye was not required for detection. The assay requires only 20 minutes to set up, and positive results could be observed visually within one minute after addition of the AuNPs. Carry-over contamination was reduced and simultaneous testing of many samples was facilitated by performing the assay in a single tube. As neither a DNA amplification step nor post-PCR analyses, such as gel electrophoresis, were needed prior to detection, this method should be widely applicable at points-of-care facilities.

The assay directly detected *M plutonius* DNA extracted from both bacterial isolates and infected bee larvae. The assay's performance on clinical samples was compared with a real-time PCR method, and found to have 100 per cent concordance for both positive and negative samples. Although, the real-time PCR assay was 10 times more sensitive than the gold nanoparticles assay, the nanoparticles-based assay was more rapid to perform, had equivalent specificity, and did not require a real-time PCR machine.

We suggest that the developed gold nanoparticle assay is particularly suited for use in carrier screening programmes for tracking the

EFB agent, *M plutonius*, in field diagnostic scenarios. The test is suitable also for verifying clinical diagnosis of EFB.

Acknowledgement

The authors wish to thank Mr Matthias Wilfried Stock for his technical assistance with the uptake of photographs, and Dr Stephen Atkinson for editorial input to the manuscript.

References

- ALIPPI, A.M. (1991) A comparison of laboratory techniques for the detection of significant bacteria of the honey bee, *Apis mellifera*, in Argentina. *Journal of Apicultural Research* 30, 75–80.
- BAILEY, L. (1956) Etiology of European foulbrood; a disease of the larval honey bee. Nature $178,\,1130$
- BAILEY, L. (1957) The isolation and cultural characteristics of Streptococccus pluton (Bacillus pluton White) and further observations on Bacterium eurydice White. Journal of General Microbiology 17, 39–48
- BAILEY, L. (1961) European Foulbrood. American Bee Journal 101, 89–92
- BAILEY, L. (1983) Melissococcus pluton, the cause of European foulbrood of honey bees (Apis spp.). Journal of Applied Bacteriology 55, 65–69.
- BAILEY, L. & BALL, B. V. (1991) Honey Bee Pathology. London, UK, and New York, USA: Academic Press
- BAILEY, L. & COLLINS, N. D. (1982) Reclassification of Streptococcus pluton (White) in a new genus Melissococcus as Melissococcus pluton. Journal of Applied Bacteriology 53, 215–217
- BELLOY, L., IMDORF, A., FRIES, I., FORSGREN, E., BERTHOUD, H., KUHN, R. & CHARRIÈRE, J. D. (2007) Spatial distribution of *Melissococcus plutonius* in adult honey bees collected from apiaries and colonies with and without symptoms of European foulbrood. *Apidologie* 38, 136–140
- CHESHIRE, F. R. & CHEYNE, W. W. (1885) The pathogenic history and the history under cultivation of a new bacillus (*B. alvei*), the cause of a disease of the hive bee hitherto known as foulbrood. *Journal of Royal Microscopical Society* 5, 581–601
- erto known as foulbrood. *Journal of Royal Microscopical Society* 5, 581–601
 DJORDJEVIC, S. P., NOONE, K., SMITH, L. & HORNITZKY, M. A. Z. (1998)
 Development of a hemi-nested PCR assay for the specific detection of *Melissococcus pluton*. *Journal of Apicultural Research* 37, 165–174
- ELGHANIAN, R., STORHOFF, J. J., MUCIC, R. C., LETSINGER, R. L. & MIRKIN, C. A. (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. *Science* 277, 1078–1081
- dependent optical properties of gold nanoparticles. *Science* 277, 1078–1081 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). (2009) FAOSTAT. http://faostat.fao.org
- FORSGREN, E., CASSEL LUNDHAGEN, A., IMDORF, A. & FRIES, I. (2005) Distribution of *Melissococcus plutonius* in honeybee colonies with and without symptoms of European foulbrood. *Microbial Ecology* 50, 369–374
- FORSGREN, E. (2010) European foulbrood in honey bees. *Journal of Invertebrate Pathology* 103, 5–9
- FORŚGREN, E. & GENERSCH, E. (2011) The foulbroods of the honeybee. *Microbiology Today* 11, 238–241
- GENERSCH, E. (2010) Honey bee pathology: current threats to honey bees and beekeeping. *Applied Microbiology and Biotechnology* 87, 87–97
- GOVAN, V. A., BROZEL, V., ALLSOPP, M. H. & DAVISON, S. (1998) A PCR method for the rapid identification of *Melissococcus pluton*. Appled and Environmental Microbiology 64, 983–1985
- GRÁHAM, J. (1992) The Hive and the Honey Bee. Hamilton, III: Dadant and Sons HORNITZKY, M. A. Z. & WILSON, S. (1989) A system for the diagnosis of the major bacterial brood diseases. *Journal of Apicultural Research* 28, 191–195
- HORNITZKY, M. A. Z. & SMITH, L. (1998) Procedures for the culture of *Melissococcus* pluton from diseased brood and bulk honey samples. *Journal of Apicultural Research* 37, 293–294
- HUNTER, R. J. (2001) Foundations of Colloid Science. New York: Oxford University $\ensuremath{\text{Press}}$
- JAIN, K. K. (2005) Nanotechnology in clinical laboratory diagnostics. Clinica chimica acta 358, 37-54
- JAIN, P. K., LEE, K. S., EL-SAYED, I. H. & EL-SAYED, M. A. (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. *The Journal of Physical Chemistry B* 110, 7238–7248
- KAITTANIS, C., SANTRA, S. & PEREZ, J. M. (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. *Advanced Drug Delivery Review* 62, 408–423

- KREIBIG, U. & GENZEL, L. (1985) Optical absorption spectra of pairs of small metal particles. *Surface Science* 156, 678–700
- LI, H. & ROTHBERG, L. (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. *Proceeding of the National Academy of Sciences of United States of America* 101, 14036–14039
- LI, H. & ROTHBERG, L. (2005) Detection of specific sequences in RNA using differential adsorption of single-stranded oligonucleotides on gold nanoparticles. *Analytical Chemistry* 77, 6229–6233
- LINK, S. & EL-SAYED, M. A. (2000) Shape and size dependence of radiative, nonradiative, and photothermal properties of gold nanocrystals. *International Reviews in Physical Chemistry* 19, 409–453
- MATHESON, A. (1993) World bee health report. Bee World 74, 76–212
- MCKEE, B. Á., DJORDJEVIC, S. P., GOODMAN, R. D. & HORNITZKY, M. A. (2003) The detection of *Melissococcus pluton* in honey bees (*Apis mellifera*) and their products using a hemi-nested PCR. *Apidologie* 34, 19–27
- MIRKIN, C. A., LETSINGER, R. L., MUCIC, R. C. & STORHOFF, J. J. (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. *Nature* 382, 607–609
- NATH, N. & CHILKOTI, A. (2004) Label Free Colorimetric Biosensing Using Nanoparticles. *Journal of Fluorescence* 14, 377–89
- OKUMURA, K., ARAI, R., OKURA, M., KIRIKAE, T., TAKAMATSU, D., OSAKI, M., & MIYOSHI-AKIYAMA, T. (2011) Complete Genome Sequence of Melissococcus plutonius ATCC 35311. Journal of Bacteriology 193, 4029–4030
- PINNOCK, D. E. & FEATHERSTONE, N. E. (1984) Detection and quantification of Melissococcus pluton infection in honeybee colonies by means of enzyme-linked immunosorbent assay. Journal of Apicultural Research 23, 168–170
- PISSUWAN, D., CORTIÉ, C. H., VALENZUÉLA, S. M. & CORTIE, M. B. (2010) Functionalised gold nanoparticles for controlling pathogenic bacteria. *Trends in Biotechnology* 28, 4, 207–213
- OUINTEN, M. & KREIBIG, U. (1986) Optical properties of small metal particles. Surface Science 172, 557–577
- ROETSCHI, A., BERTHOUD, H., KUHN, R. & IMDORF, A. (2008) Infection rate based on quantitative real-time PCR of *Melissococcus plutonius*, the causal agent of European foulbrood, in honeybee colonies before and after apiary sanitation. *Apidologie* 39. 362–371
- ROSI, N. L. & MIRKIN, C. A. (2005) Nanostructures in biodiagnostics. Chemical Review 105, 1547-1562
- SHAW, D. J. (1991) Colloid and Surface Chemistry. Oxford: Butterworth–Heinemann SHAWKY, S. M., BALD, D. & AZZAZY, H. M. E. (2010) Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles. *Clinical Biochemistry* 43, 1163–1168
- SHIMANUKI, H., KNOX, D.A., FURGALA, B., CARON, D.M. & WILLIAMS, J.L. (1992) Diseases and pests of honey bees. In The Hive and the Honey Bee. Ed J. Graham. Hamilton, Ill: Dadant and Sons. pp 1083–1151
- STAROSCÍK, A. (2004) Calculator for determining the number of copies of a template. URI Genomics & Sequencing Center. www.uri.edu/research/gsc/resources/cndna.html
- STORHOFF, J. J., ELGHANIAN, R., MUCIC, R. C., MIRKIN, C. A. & LETSINGER, R. L. (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. *Journal of American Chemical Society* 120, 1959–64
- STORHOFF, J. J., LUCAS, A. D., GARIMELLA, V., BAO, Y. P. & MÜLLER, U. R. (2004) Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. *Nature Biotechnology* 22, 883–887
- colorimetric scatter of gold nanoparticle probes. *Nature Biotechnology* 22, 883–887 TOMKIES, V., FLINT, J., JOHNSON, G., WAITE, R., WILKINS, S., DANKS, C., WATKINS, M., CUTHBERTSON, A. G. S., CARPANA, E., MARRIS, G., BUDGE, G. & BROWN, M. A. (2009) Development and validation of a novel field test kit for European foulbrood. *Apidologie* 40, 63–72
- VANENGELSDORP, D. & MEIXNER, M. D. (2009) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. *Journal of Inventebrate Pathology* 103, 80–95
- WILKINS, S., BROWN, M., ANDREW, A. & CUTHBERTSON, G. S. (2007) The incidence of honey bee pests and diseases in England and Wales. *Pest Management Science* 63, 1062–1068
- YGÚERABIDE, J. & YGUERABIDE, E. E. (1998A) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—I. Theory. *Analytical Biochemistry* 262, 137–156
- YGUERABIDE, J. & YGUERABIDE, E. E. (1998B) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—II. Experimental characterization. *Analytical Biochemistry* 262, 157–176

A novel gold nanoparticles-based assay for rapid detection of *Melissococcus plutonius*, the causative agent of European foulbrood

M. Saleh, H. Soliman, H. Sørum, et al.

Veterinary Record published online September 1, 2012

doi: 10.1136/vr.101040

Updated information and services can be found at: http://veterinaryrecord.bmj.com/content/early/2012/10/16/vr.101040.full.html

These include:

References This article cites 42 articles, 3 of which can be accessed free at:

http://veterinaryrecord.bmj.com/content/early/2012/10/16/vr.101040.full.html#ref-list-1

P<P Published online September 1, 2012 in advance of the print journal.

Email alerting serviceReceive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

Advance online articles have been peer reviewed, accepted for publication, edited and typeset, but have not not yet appeared in the paper journal. Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/