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Across the Northern hemisphere, managed honey bee colonies, Apis mellifera, are currently affected by abrupt
depopulation during winter and many factors are suspected to be involved, either alone or in combination. Parasites and
pathogens are considered as principal actors, in particular the ectoparasitic mite Varroa destructor, associated viruses and
the microsporidian Nosema ceranae. Here we used long term monitoring of colonies and screening for eleven disease
agents and genes involved in bee immunity and physiology to identify predictive markers of honeybee colony losses during
winter. The data show that DWV, Nosema ceranae, Varroa destructor and Vitellogenin can be predictive markers for winter
colony losses, but their predictive power strongly depends on the season. In particular, the data support that V. destructor is
a key player for losses, arguably in line with its specific impact on the health of individual bees and colonies.
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Introduction

Agricultural pollination should integrate wild species, which
provide pollination as an ecosystem service, and managed
pollinator introduction as crop management practices [l].
Amongst the managed pollinators, the Western honey bee, Apis
mellifera, is clearly a cornerstone, because pollination of many crops
in most parts of the world relies on this species [1]. However,
managed honey bee colonies are currently affected by a syndrome
corresponding to an abrupt depopulation during winter [2]. Many
biotic and abiotic factors are suspected to be involved in this
condition, either alone or in combination [2-3]. Among them,
parasites contribute to weakening colony health, leaving room to
secondary infections. In particular, the ectoparasitic mite Varroa
destructor [4] 1s now considered to be the main candidate involved
in winter colony losses in Europe [5-8]. This parasite originates
from South-East Asia and has now become widespread across
most of the continents [4]. It has been shown that V. destructor or its
associated microbes can affect the immune system of parasitized
bees [9-12]. In addition, viral infections linked with V. destructor are
generally considered as a major cause of bee losses. Indeed, V.
destructor plays a central role as a mechanical and biological vector
of several viruses [12-17]. In addition V. destructor appears to
accelerate the replication of latent viral infections [12,17-20].
Although more than 19 different viruses have been detected in 4.
mellifera, only three have been associated with winter losses on a
large scale [5,21-23], namely Deformed wing virus [24], Acute
bee paralysis virus [25,26] and Israeli acute bee paralysis virus
[27]. These viruses are positive stranded RNA viruses belonging to
the Iflavindae and Dicistroviridae families and are suspected to
enhance the deleterious action of V. destructor on bee colonies by
their strong association with this mite [20,28,29]. In the United
States, IAPV was first identified as a predictive factor for
producing CCD symptoms [21]. However, subsequent surveys
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indicate that this virus was not the main factor responsible for
losses but only one of multiple possible factors involved [30,31]. In
Europe, DWV and ABPV are generally suspected to be involved
in winter colony losses [5,22,23]. Both are transmitted by the mite
after feeding on bee pupae or adults [20,29]. ABPV is highly
virulent for bees when injected directly into the hemolymph
[25,29,32]. On the contrary, DWV is much less virulent and
generates typical symptoms of deformed wings only in bees from
colonies highly infested with Varroa mites [33]. Despite its low
virulence for bees, DWV infects a large range of bee tissues and
can produce high titers in infected bees, suggesting a potential
impact on bee physiology [34,35].

Another potential candidate involved in colony losses is the
microsporidian Nosema ceranae [36,37] although the impact of this
parasite on colony health in Europe still remains controversial
[5,38,39].

Despite the fact that several studies have pointed out the
potential involvement of pathogens on colony losses, no common
pattern has yet emerged. This is probably due in part to the
different parameters present in these studies such as climate, bee
races, beekeeping practices or sampling methods. Indeed sampling
often consists of bees collected once from either healthy, weak or
dead colonies. In this context long term monitoring appears
crucial, especially because pathogens causing colony death may
have disappeared leaving room for opportunistic infections.

In this study, we aimed to identify predictive markers of winter
honey bee colony losses. Although the up- or down-regulation of a
marker in a sample may not be related to the principal cause(s) of
the disease, such markers would help beekeepers or bee inspectors
to set up a reliable diagnostic tool and to standardize bee colony
monitoring all around the world. For this purpose we performed a
survey of bee colonies in Switzerland over six months and checked
for the presence and loads of eleven honey bee pathogens in the
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samples, as well as the levels of expression of three A. mellifera genes
involved in bee immunity.

Materials and Methods

1. Experimental design

In summer 2007, 29 queenright colonies were selected from our
local bee stocks (predominantly 4. m. carnica) of similar strength
(~14°000 workers each) at the Swiss Bee Research Centre in Bern,
Switzerland. In order to get sufficiently different parasitism levels
with the ectoparasitic mite V. destructor, 18 colonies were
adequately and timely treated in winter 2006-2007 and in
summer and fall 2007 against this mite using organic acids
following the Liebefelder alternative treatment (twice with formic
acid by evaporation using the FAM diffuser in summer and late
summer and oxalic acid by droplets in Fall) [40], while the others
were left untreated. Both groups were otherwise managed in
exactly the same way prior to and during the experiment. In the
experiment, the two groups were physically separated by 250 m
and one four-storied building to minimize mite movement
between colonies (e.g. via drifting and/or robbing; [4,41]), but
nevertheless had similar foraging conditions. Mite infestation levels
were monitored weekly in each colony using the natural mite fall
method [4,42], distinguishing colonies with high and low mite
infestations. Pooled worker samples (N = 100) were collected alive
in the brood nest in summer (18-08-2007) at the beginning of the
experiment and in fall (22/11/2007). These two samplings were
called “Summer” and “Fall”. Another sampling, “Winter”, was
ultimately performed during winter but at different times
according to the destiny of the colony: in colonies which survived
winter, bees were collected on 28/01/2008 while for the colonies
that did not survive, this sampling was done just before collapsing
from 30/11/2007 to 28/01/2008. Colony-level traits (areas
covered with bees, number of cells with open, sealed brood,
honey and pollen) were estimated in dm? every 3 weeks from
September until the end of October and at the beginning of March
until May using the Liebefelder standard method [43].

2. Molecular approaches

Pools of 100 workers were collected alive from the brood nests
of each colony and immediately frozen at —20°C. For total RNA
extraction, bees were first homogenized in 20 ml of Tris-NaCl
buffer (Tris 10 mM; NaCl 400 mM; pH 7.5). An aliquot of 50 pl
of the homogenate was used for RNA extraction with the
NucleoSpin  RNA I Kit® (Macherey-Nagel) following the
recommendations of the supplier. Then, cDNA was immediately
processed using M-MLV reverse transcriptase (Invitrogen) and
random hexamers [44]. These samples were checked for the
presence of eight honey bee viruses (DWV, ABPV, IAPV, Chronic
bee paralysis virus, Kashmir bee virus, Black queen cell virus,
Sacbrood virus and Slow bee paralysis virus), using a qualitative
PCR assay [31,44,45] with viral cDNA for positive control and
water for the negative control. DWV, BQCV and ABPV positive
samples were further processed for the quantification of viral titers
using quantitative PCR (qPCR). The microsporidians V. ceranae
and N. apis were quantified as well in each sample using gPCR
[31]. In parallel, the expression levels of A. mellifera transcripts
including witellogenin, eater and hymenoptaecin were monitored using
qPCR [46]. In order to normalize the data according to the
amount of RNA in the sample, analysis of the f-actin gene was
performed in parallel for each sample [47]. For all the targets
except DWV, normalization was done using the comparative
quantification method (delta C'T method) [48]. DWV loads in
samples were quantified by absolute quantification method using
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standard curves made of serial dilutions of known amounts of the
amplicons [49] and presented as equivalent copies of DWV
genome. All qPCR reactions were conducted using a thermal
profile of: 50°C (2 min) then 95°C (10 min) followed by 40 cycles
of 95°C (15s), 60°C (1 min). Because qPCR assays were
performed using SYBR-Green (Eurogentec), a melting curve was
performed at the end of each run to ascertain the amplification of
the target.

3. Data analyses

The bee colony samples were divided into two groups according
to their winter survival. The first group (DC: dead colonies)
consisted of 13 colonies which died during winter; most of these
(11 out of 13) belonged to the set of colonies that received no
treatment against V. destructor. The second group (SC: surviving
colonies) included the 16 colonies that survived winter and
coincided with the colonies that received a treatment against the
mite. The variation estimates of transcript abundance of the
studied variable between different groups were evaluated by using
two tailed t-tests and non-parametric Kruskal-Wallis test as
appropriate. Since DWV values covered a wide range, the data
were transformed as the logl0 DWV. For survival analysis, a
Kaplan—-Meier survival analysis was performed and used to
compare the groups using Mantel-Hansel tests. Linear Models
were also performed using Standard Least squares fitting in the Fit
Model platform of JMP software to test the effects of colony status
when nested within season. To visualize the results, regression
diagnostics were performed with the model leverage plot. This
allowed us to test if the variables are predictive on overwintering
abilities and also to check the influence of each point on each
hypothesis test. Multivariate Spearman correlations were per-
formed between the variables (Pathogens and physiological
markers). P-values below 0.05 were considered significant. The
analyses were performed using Systat 12® and JMP® software.

Results

1. Bee population measurements and timing of colony

collapse

While the colony size did not differ significantly in September
between SC and DC groups (Figure 1; Mean: 12743.75 bees and
13376.92 respectively, Mann-Whitney test P=0.07), a significant
decrease in population was observed in October (29/10/2007) in
the group of colonies that died during winter (Mann-Whitney test,
P<0.01, Figure 1 A). In the untreated group most of the colonies
collapsed during December 2007 (N =9) and two out of 11 died
before February 2008. Two colonies properly treated against V.
destructor mites died during winter but later in the season (end of
February) and obviously because of queen failure (these colonies
became drone layers). The rest of the colonies did develop with an
increased population as expected in this season (Figure 1 A). The
V. destructor infestation levels and timing of treatments are indicated
in Figure 1 B. After each mite treatment, we had considerable
treatment Varroa fall confirming the treatment efficacy. From
August to September, the natural daily mite fall in the surviving
colonies decreased from [average *£ SE] 8.13%£1.95 to 5.21%x0.5
per day with 0.377%0.089 after the last oxalic acid treatment.

2. Parasites and Pathogens

The number of V. destructor mites collected during the course of
the experiment in the DC group exceeded those collected in the
SC group (Figure 1 B and 2 C). The mite level in the DC increased
constantly until October before decreasing slightly thereafter. Mite
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Figure 1. Colony strength and V. destructor natural mite fall. A) Colony strength (Y-axis) by sampling month in 2007/2008 (X-axis) for the
colonies that died during winter (DC, black boxes) and the ones that survived (SC, grey boxes). P value is indicated (Mann-Whitney test): **P<<0.01.
Number of live colonies is given (N). B) Natural average V. destructor mite fall in 2007/2008 on the hive bottom boards per day per colony (Y-axis) for
the two groups Dying Colonies (DC) and Surviving Colonies (SC) over the experimental period. (X-axis) Infestation levels [average =+ SD] are shown for
each month and timing of treatments (OA =Oxalic Acid, FA =Formic acid) is indicated by arrows (n.v.=no value).

doi:10.1371/journal.pone.0032151.g001

loads in the surviving colonies dropped substantially from October
to the winter sample.

Only five honey bee viruses (DWV, BQCV, ABPV, SBV and
SPV) were detected in the experimental colonies (Table 1). The
viruses CBPV, KBV and IAPV were not detected. DWV had
56.25% prevalence for SC and 61.5% for DC in summer. Almost
all colonies were positive for this virus in fall (93.75% for SC and
100% for DC). Conversely, BQCV and SBV displayed a lower
prevalence during the cold season, with no detectable SBV sample
in the fall sample. We failed to detect SPV in summer and this
virus was identified in less than 20% of the samples collected in fall
in both DG and SC groups. No SPV could be detected in the bees
that survived winter although the virus was detected in three
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colonies of the DC just before colony collapse. Although all
colonies were positive for N. ceranae, N. apis could not be detected.
The prevalence of V. ceranae was equivalent between the groups in
all seasons and ranged between 18.75% and 50% (Table 1). No
distinction could be made in terms of numbers of the detected
investigated pathogens between the SC and DC groups in any
season as shown in table 1 (Mann-Whitney U-tests, Summer:
P=0.729; Fall: P=0.854, Winter: P=0.359).

3. Expression levels of bee pathogens and genes related

to the bee immunity
As none of the qualitative PCR analysis showed significant
differences between surviving colonies and colonies that died
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Figure 2. Seasonal variability in Summer, Fall and Winter. A) Pathogens B) Gene expression profiles C) V. destructor. The Y-axis shows the
relative quantities except for DWV, where it shows equivalent genome copies and the X-axis displays the groups Dying Colonies DC (N =13) and
Surviving Colonies SC (N = 16). Significant differences (Two tailed t-test) are indicated with *=P<0.05 and **=P<0.01.

doi:10.1371/journal.pone.0032151.9002

during winter (Table 1), we conducted quantitative analyses from
samples collected in summer, fall and winter in order to point out
potential differences. Because winter samples from the DC group
were collected just before collapsing and therefore at different time
points during winter, data analyses are presented separately for
DC and SC groups (Fig. 2). We measured the expression levels of
three pathogens (DWV, BQCV and V. ceranae) based on their high
prevalence in our samples and their potential pathogenic effects at
the colony level. ABPV was excluded from these assays because
only three samples were found infected by this virus. In addition,
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we completed these analyses by measuring in parallel the
expression levels of three A. mellifera genes involved in bee immune
defenses (hymenoptaecin and eater) or bee life expectancy (vitellogenin).

Seasonal variation. Without considering the outcome of the
colonies (death or survival during winter), seasonal variation was
observed between summer and fall (Figure 3). DWV expression
was higher in fall than in summer (P<<0.001), but conversely
BQCV titers were lower in fall than in summer (P<<0.001). N.
ceranae quantification showed equivalent titers between summer
and fall (P=0.479). Vitellogenin mRNA titers remained stable
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Table 1. Proportion of colonies with detectable levels of pathogens as measured by PCR and gPCR in surviving (SC) and dying

Season Status Colonies DWV (%) BQCV (%) ABPV (%) SBV (%) SPV (%) N. ceranae (%) Nr Path
Summer DC 13 61.5 84.6 7.7 15.4 0 385 2.08+0.64
SC 16 56.3 87.5 0 43.8 0 313 2.19+1.17
Fall DC 13 100 53.8 7.7 0 154 30.8 2.08+1.04
SC 16 93.8 50 0 0 18.8 50 1.94+0.85
Winter DC 13 100 100 0 7.7 23.1 38.5 2.69+0.95
SC 16 100 93.8 0 25 0 18.8 2.38+0.62

doi:10.1371/journal.pone.0032151.t001

between summer and fall (P=0.544) while hymenoptaecin mRNA
levels were higher in fall than in summer (P<<0.001). Conversely,
eater expression was significantly reduced in fall compared to
summer (P<<0.001).

Such comparisons between fall and winter were more difficult to
address, especially for colonies that died during winter, because
the sampling was done just before the population decline and thus
for this group, winter sampling encompassed several weeks, from
December, when most of these colonies died, to January. In
contrast, all samples were collected by the end of January in
colonies that survived winter. The results are presented in table 2.
In the group that died during winter, significant differences could
be observed between samples collected in fall and those collected
upon collapsing but only for BQCV which displayed increasing
levels (P<<0.001) and the eater gene for which expression conversely
decreased (P<<0.05). The levels of M. ceranae remained stable
(P=0.94). In the surviving group, significant variations were
observed between fall and winter: N. ceranae levels decreased
(P<<0.001) as well as eater (P<<0.001) and witellogenin (P<<0.001)
mRNA levels. In contrast, DWV increased (P<<0.05) as well as
BOCYV (P<0.05). Levels of hymenoptaecin were stable (P =0.981).

Comparisons between DC and SC groups. Significant
variations were observed in the fall between DC and SC groups,
but only for DWV, N. ceranae and vitellogenin mRNA (Figure 2). No
differences in any of the targets analyzed here were observed in
summer between the two groups. DWV loads were higher in fall in
the collapsing colonies than in the surviving ones (P<<0.01). In fall,
colonies that collapsed during winter displayed lower levels of .
ceranae than surviving ones (P<<0.05).while in the summer . ceranae
levels were similar in  both DC and SC  groups
(P=0.483).Variations in BQCV titers between SC and DC
groups were only observed in winter (P<<0.05). While no
vitellogenin differences could be observed in summer between both
SC and DC groups, this gene displayed significantly higher
expression levels in fall in the surviving colonies than in the DC
group (P<<0.05).

4 Correlations between markers

Correlations between the six markers were observed (Figure 4).
In summer, DWV uvs. lymenoptaecin (r, = 0.50, P<<0.01), hymenoptaecin
vs. eater (ry=0.46; P<<0.05), vitellogenin vs. eater (ry=0.88, P<<0.001)
and witellogenin vs. hymenoptaecin (ry=0.37, P<0.05) showed signif-
icantly positive correlations. In fall, these correlations were not
observed anymore but BQCV showed a positive correlation with
N. ceranae (ry=0.44, P<<0.05). In fall, the number of V. destructor
mites collected on bottom boards was significantly correlated with
both DWV (positively) and wvitellogenin (negatively) expression levels
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Total numbers of pathogens (Nr Path) are summarized in the last column (£SD). No significant differences in pathogen numbers were found between Live and Dead in
any season (Mann-Whitney test, Summer P =0.729; Fall P =0.854, Winter P =0.359). CBPV, KBV, IAPV and N. apis were not found in any colony.

(r;=0.57, P<0.05 and r,=-—0.37, P<0.05, respectively). In
contrast, V. destructor correlated positively in winter with N. ceranae
(r;=0.41, P<0.05), Eater (r;=0.58, P<<0.01) and witellogenin
(ry=0.45, P<<0.05). Full data are presented in Figure 4.

5. Identification of predictive markers for colony collapse
Using a linear model (see M&M) the results show that over all
seasons, DWV (P<0.05), V. destructor (P<<0.001), N. ceranae
(P<<0.001) and witellogenin (P<0.001) could be considered as
predictive markers for winter losses. This was not the case for
BQCV (P=0.467), eater (P=0.173) and hymenoptaecin (P =0.376)
which displayed few variations between DC and SC groups either
in summer or in fall. However, the model showed that there is a
significant seasonal impact on the expression of these markers
DWV: P<0.05; V. destructor: P<0.01, N. ceranae: P<<0.05 and
vitellogenin: P<<0.01). Then in summer only V. destructor (P<<0.01)
could be considered as a significant predictive marker while in fall,
DWV (increased; P<<0.01), V. destructor (increased; P<<0.01), M.
ceranae (decreased; P<<0.05) and Vitellogenin (decreased; P<<0.05)
could be considered as significant predictors of colony collapse.

Discussion

Here we showed that both V. destructor and DWV are strong
predictive markers for honey bee colony death during winter.

Among the high number of microorganisms which are
coexisting with honey bee colonies, most are opportunistic and
induce troubles under as-yet undefined environmental conditions.
It is then crucial for establishing a proper diagnosis of bee diseases
to be able to distinguish between a normal situation and a
pathogenic one. This can be partly achieved by measuring the
expression levels of pathogens in honey bees using quantitative
techniques, although data can only be recorded when clinical signs
are detected or after colony collapse. Here we present a novel
approach, which consists of identifying markers which could
predict the destiny of the colony during winter. These markers
may help to establish reliable diagnostic tools in relation with field
observations, and ultimately to identify the causes of colony
mortality.

1. Varroa destructor is strongly associated with colony
collapse during winter

In our assay, all of the colonies which were left untreated died
during winter, while only two colonies collapsed despite proper
treatment. These two colonies collapsed late in the season (in
February) in comparison with the majority of the other colonies
which died before the end of December. These two colonies had
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doi:10.1371/journal.pone.0032151.g003

an over-abundance of male bees, arguably a sign of failing queen
fecundity. Colonies that died during winter had significantly more
mites than the surviving group either in summer, fall or winter. V.
destructor loads were thus very predictive of colony death and, in
fact, provided the only predictive marker in summer. The mite
level in the colonies which died during winter increased to reach a
peak in October and decreased thereafter following the drop in
colony size.

2. DWV is a predictive marker of colony collapse

Several bee viruses were identified. Apart from SPV which was
only detected in highly mite-infested colonies here and rarely in
previous surveys of European bees [45,50], DWV, SBV and

@ PLoS ONE | www.plosone.org

BQCYV are commonly detected in western honey bee colonies all
around the world, most of the time in the absence of clinical signs,
although these viruses can be pathogenic under favorable
environmental circumstances [20]. We found a significant increase
of DWV titers between summer and fall. This result is consistent
with previous reports showing an increase in DWV titers in fall
[49], which probably reflects the close link between DWV and V.
destructor since mite numbers climb rapidly from summer to fall. It
is also illustrated with the significant positive correlation in fall
between V. destructor and DWV. This mite is indeed an efficient
vector of DWV, transmitting it upon feeding on bee pupae or
during the phoretic phase of its biological cycle on adult bees
[14,51,52]. The mite seems also competent for replication of the
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Table 2. Seasonal variability for all colonies together from
Summer to Winter for pathogen loads, Varroa destructor (Vd)
and expression levels for vitellogenin and immune genes.

SUMMER TO FALL FALL TO WINTER

TARGET

DC SC DC SC
vd - - - Vi
owv tr 1 -
BQcv L L T
Nosema ceranae — T = Lol
Vitellogenin — — g L
Eater ) Lol 1 Lol
Hymenoptaecin T T — —

Data are grouped by colony status after Winter (SC = Surviving colonies,

DC =Dying colonies). (Mann-Whitney test : 1 =P<0.05; 1 1 or | | =P<0.01;
111 or | | | =P<0.001; — =No significant difference).
doi:10.1371/journal.pone.0032151.t002

virus thereby increasing DWV prevalence and titers in mite
infested colonies [33,53]. Proper treatments of bee colonies against
V. destructor drastically reduced DWV titers in colonies supporting
arguments that this virus is not efficiently horizontally transmitted
in the absence of mites [54] and that vertical transmission routes
are unlikely to generate heavy loads in bee progeny. We found
higher DWV titers in collapsing colonies than in the surviving
group suggesting that this virus might be involved in the process of
collapsing. DWV was shown to replicate in various bee tissues
including fat body, a key tissue involved in many physiological
processes including immune defenses [34,55]. In particular, the fat
body is the site for production of the egg yolk protein vitellogenin
[34,56]. Vitellogenin is involved in immunity and ageing through
hormonal regulatory pathways and is therefore a common
molecular marker for the overall health and lifespan of individual
bees [57]. One can hypothesize that DWV replication impairs the
expression of vitellogenin in fat body cells, which could explain
why we found significantly less uwitellogenin mRNA titers in
collapsing colonies than in surviving ones. In addition, V. destructor
infestation levels and witellogenin were significant negatively
correlated in fall. The data agree well with a previous study
showing a reduction of Vitellogenin titers in mite infested workers
[58], although DWV quantification was not addressed in the prior
study. Put together, this reinforces the hypothesis of an impact of
DWV on fat body function.

3. Nosema ceranae titers are higher in healthy colonies
N. ceranae is a microsporidian intracellular parasite suspected to
have replaced its common relative V. apis during the last decade
[59,60], although there are some reports showing that N. ceranae
has been present in western honey bees for greater than twenty
years [59,61]. This parasite replicates in the bee gut and is
therefore a potent pathogen of bee colonies even if its
pathogenicity has only been observed in experimental conditions.
These infections are very common in the absence of clinical
symptoms and recent reports have shown that this parasite is not
involved in bee colony collapses in Europe [5,39] except in Spain
[36,62]. Our results support that N. ceranae is not involved in
colony collapse, because no significant differences were observed
between colonies that died during winter and those which
survived. Likewise, we did not observe an increase of N. ceranae
titers from summer to fall, even in December when colonies were
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Summer:

Variable by Variable Spearmanp P value Plot

Hym DWWV 0.4969  0.0061 | — ]
Hym Eater 0.4665  0.0107 ( — ]
Vg Eater 0.8823 <000 ———
Vg Hym 0.3680  0.0495 — ]
Fall:

Variable by Variable Spearmanp P value Plot

BQCvV NCer 0.4444 0.0157 | — |
Vd DwWvV 0.5739 00011 —— w1
vd Vg -0.3783 0.0430 — ]
Winter:

Variable by Variable Spearmanp P value Plot

Eater NCer 0.5310 00030 w1
Eater BQCV 0.3789 0.0427 | — |
Hym BQCV 0.5013 0.0056 | — ]
Hym DWvV 0.5862 0.0008 ————— =
Vg NCer 06345 0.0002 )
Vg Eater 0.6163 0.0004 ———
vd NCer 0.4084 0.0309 . ]
Vd Eater 0.5788 00013 ———
vd Vg 0.4457 0.0175 | — ]

Figure 4. Spearman rank correlations for the different
variables who showed significant P values (P<0.05, indicated
in bold) for the three seasons summer, fall and winter (N=29
colonies). The variables shown are: Hym = Hymenoptaecin, Vg = Vitel-
logenin, Eater, NCer=Nosema ceranane, DWV, BQCV and Vd = Varroa
destructor.

doi:10.1371/journal.pone.0032151.g004

about to die. No V. apis were detected in any sample in spite of the
fact that this species has a lower temperature preference than N.
ceranae and might therefore be favored in temperate climates such
as in Switzerland [60,63]. In a case study in Switzerland, N. apis
was detected only in mixed infections with N ceranae [64],
consistent with these results.

4. Immune genes are upregulated in dying colonies

We monitored the expression of three 4. mellifera genes involved
in humoral and cellular immune defenses to identify physiological
responses that may occur before colony collapse. In workers, in
addition to being the precursor of royal jelly proteins produced by
nurses to feed the larvae, the egg yolk glycoprotein vitellogenin
displays multiple functions affecting important physiological
pathways [65]. Among these, it has been shown that vitellogenin
plays a role in bee immunity as a zinc transporter [66].
Hymenoptaecin is an antimicrobial peptide, which is highly
expressed in the bee hemolymph after challenge with bacterial
infections [48,67]. Eater is a major phagocytic receptor for a broad
range of bacterial pathogens in Drosophila [68] and its homolog was
identified in the honey bee genome [48,69].

The analysis of such markers from pooled individuals is
complex, especially for samples collected in summer, which
contained a mix of workers of different ages, because the
expression of these genes might also vary according to the age-
related task of worker bees. In foragers it has been shown that the
vitellogenin titers as well as the number of hemocytes were strongly
reduced compared to the nurse bees [70,71]. Furthermore, no
data are available concerning the gene expression patterns of
winter bees. Despite that, we observed significant seasonal
variations among these genes. While witellogenin expression
remained stable from summer to fall, Aymenoptaecin and eater
displayed opposite expression patterns in both groups of colonies
(surviving and non surviving colonies). The rapid decrease of eater
from summer to fall suggests that hemocyte numbers are reduced
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in winter bees while humoral immune responses are activated.
Data analyses from fall to winter in samples collected from
colonies that did not survive winter (mostly collected in December
before collapsing) showed no variation in either witellogenin or
hymenoptaecin mRNA levels while eater displayed a slight increase. In
contrast, samples collected from colonies that survived winter
showed a very high increase of both wvitellogenin and ealer transcripts
while hymenoptaecin kept stable. Since these samples were collected
at the end of January, these results may point out a different
physiological state of bees collected in winter clusters two months
apart. One can hypothesize that V. destructor — DWV — N. ceranae
may induce different immune signaling transduction pathways
than the pathway, leading to the immune transcript hymenoptae-
cin [48]. As such, none of the immune genes could be identified as
significant predictive markers, while vitellogenin does seem to be a
viable marker.

5. Varroa destructor and DWV are strong predictive

markers for colony collapse during winter

From the putative investigated markers, four of them were
shown to be good predictive ones but seasonal. Among them, V.
destructor and DWV were already identified during summer as
strong predictive markers for collapsing during winter. As winter
bees are reared as soon as mid-summer until mid-September in
Switzerland [72], these data suggest that V. destructor infestations
levels in colonies should be estimated by beekeepers as soon as
summertime in order to anticipate winter colony losses. Therefore,
recording of DWV loads might not be as suitable since DWV was
shown to be a strong marker of winter colony collapse in fall but
not in summer.

References

1. Acbi A, Vaissiere BE, vanEngelsdorp D, Delaplane K, Roubik DW, et al.,
editors. Back to the future: Apis vs. non-Apis pollination. Trends Ecol Evol 27: In
press.

2. Neumann P, Carreck NL (2010) Honey bee colony losses. J Apic Res 49: 1-6.
doi:10.3896/IBRA.1.49.1.01.

3. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, et al., editors.
Global pollinator declines: drivers and impacts. Trends Ecol Evol 25: 345-353.

4. Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa
destructor. ] Invertebr Pathol 103: 96-119. doi:10.1016/].jip.2009.07.016.

5. Genersch E, von der Ohe W, Kaatz H, Schroeder A, Otten C, et al., editors.
The German bee monitoring project: a long term study to understand
periodically high winter losses of honey bee colonies. Apidologie 41: 332-352.
doi:10.1051/apido/2010014.

6. Schifer MO, Ritter W, Pettis JS, Neumann P (2010) Winter losses of honeybee
colonies (Hymenoptera: Apidae): The role of infestations with Aethina tumida
(Coleoptera: Nitidulidae) and Varroa destructor (Parasitiformes: Varroidae). J Econ
Entomol 103: 10-16.

7. Dahle B (2010) The role of Varroa destructor for honey bee colony losses in
Norway. J Apic Res 49: 124-125. doi:10.3896/IBRA.1.49.1.26.

8. Guzman-Novoa E, Eccles L, Calvete Y, Mcgowan J, Kelly PG, et al., editors.
Varroa destructor is the main culprit for the death and reduced populations of
overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie
41: 443-450. doi:10.1051/apido/2009076.

9. Ball BV (1988) The impact of secondary infections in honey-bee colonies infested
with the parasitic mite Varroa jacobsoni. In: Needham GR, Page RE, Delfinado-
Baker M, Bowman CE, eds. Africanized Honeybees and Bee Mites. Chichester,
London, UK: Ellis Horwood. pp 457-461.

10. Yang XL, Cox-Foster DL (2005) Impact of an ectoparasite on the immunity and
pathology of an invertebrate: Evidence for host immunosuppression and viral
amplification. Proc Natl Acad Sci U S A 102: 7470-7475.

11. Gregory PG, Evans JD, Rinderer T, de Guzman L (2005) Conditional immune-
gene suppression of honeybees parasitized by Varroa mites. J Insect Sci 5: 7.

12. Yang X, Cox-Foster D (2007) Effects of parasitization by Varroa destructor on
survivorship and physiological traits of Apis mellifera in correlation with viral
incidence and microbial challenge. Parasitology 134: 405-412.

13. Ball BV, Allen MF (1988) The prevalence of pathogens in honey bee Apis mellifera
colonies infested with the parasitic mite Varoa jacobsoni. Ann Appl Biol 113:
237-244.

14. Bowen-Walker PL, Martin SJ, Gunn A (1999) The transmission of deformed
wing virus between honeybees (dpis mellifera L.) by the ectoparasitic mite Varroa

Jacobsoni Oud. J Invertebr Pathol 73: 101-106.

@ PLoS ONE | www.plosone.org

Predictive Markers and Colony Losses

In general, the results presented here are in line with those of
several studies showing that V. destructor and DWV are associated
with colony losses in winter [3,6,8,22], and in contrast to analyses
of the enigmatic Colony Collapse Disorder in the U.S., for which
mite numbers were a poor correlate with CCD risk [31].

6. Conclusion

This study provides evidence that Varroa destructor is a key player
for winter colony losses and highlights the urgent need for efficient
treatments against this parasite. The data suggest an indirect effect
of mite infestation on honeybee overwintering abilities through the
promotion of opportunistic viral infections, which eventually lead
to the impairment of critical physiological functions. The
knowledge gathered in this work will help to improve our
understanding of bee losses, standardize methods for biomarkers
of disease and finally to mitigate causes of bee declines.
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